

Newborn Screening for Hemoglobinopathy

Gerald M. Woods, MD April 17, 2009

I have no actual or potential conflict of interest in relation to this program

Subject: Neonatal hemoglobinopathy screening

Method: Universal, HPLC

Purpose: Identify infants with homozygous sickle cell disease and begin penicillin prophylaxis

Secondary effects: Identifies infants with other hemoglobinopathies whom require follow-up

Identifies infants with hemoglobinapothy traits whose families should receive counseling

What are "normal" hemoglobins

Newborns	Adults
80-90%	1-2%
10-20%	~95%
~1%	<3.5%

Children's Mercy HOSPITALS & CLINICS www.childrensmercy.org

Hb F	Q 2	γ2
Hb A	α2	β2
Hb A ₂	α2	δ2

Isoelectric Focusing Hb Barts + acetylated F, A and F Control lane on right with aged bands, A, F, S (C at bottom)

HPLC Normal 5 year old

What are some "abnormal" hemoglobins

- HbS $\alpha_2 \beta_2^5$
- HbC $\alpha_2 \beta c$
- HbE $\alpha_2^{-}\beta_E^2$
- Hb Barts γ^4

12 month old S-trait

F	Concentration =	4.8*	g
A2	Concentration =	3.9*	ક

*Values outside of expected ranges

11 year C-trait

F Concentration = $2.1 \times \%$ A2 Concentration = $3.9 \times \%$

*Values outside of expected ranges

22 month old Hb E-trait

F (Concentration =	1.8* %
A 2	Concentration =	20.6* %

*Values outside of expected ranges

1 week old with F, Acetylated F and S (?SSD, Sbeta Zero, S-HPFH)

F Concentration = 90.9* % A2 Concentration = %

*Values outside of expected ranges

1 month old Hb F, acety F, S, and Barts

Total Area:

NB' LOW

1-13-

F Concentration = 92.2* % A2 Concentration = %

*Values outside of expected ranges

2008 Missouri Newborn Hemoglobinopathy Screening Results

Hemoglobin Result	Cases	%
ALL	81,028	100
FA	79,334	97.9
FAS	978	1.2
FAC	292	0.36
FAX	140	0.17
FSA INC	106	0.13
FAE	49	0.06
FCA INC	37	0.05
FAD	36	0.04
FASX	2	0.002

2008 Missouri Newborn Hemoglobinopathy Screening Results

Hemoglobin Result	Cases	%
FS	20	0.02
FSC	11	0.01
High ↑ Barts	2	0.002
FSA	3	0.003
sl ↑ Barts	10	0.01
FC	3	0.003
FSX	2	0.002
FCX	2	0.002
FDA	1	0.001

2008 Missouri Abnormal (1694) Hemoglobinopathy Screening Results

Hemoglobin Result	Cases	%
FS (HbSS or SB [°] thal or S/HpFH	20	1.2
FSC (Hb SC Disease)	11	0.6
FSA (Sβ+ thal)	3	0.2
FSX	2	0.1
High ↑ Barts (? Hb H)	2	0.1
sl \uparrow Barts (α thal trait)	10	0.6
FC (Hb CC disease or CB [*] thal)	3	0.2
FCX	2	0.1
FAS (sickle trait)	978 +	57.7
FAC (Hb C trait	292 +	17.2
FAX [variant trait (not Barts)]	140	8.3
FAE (Hb E trait)	49	2.9
FAD (Hb D trait)	36	2.1

What do you do with abnormal hemoglobin screen?

- Call hematologist
- Obtain confirmatory hemoglobin electrophoresis
- Review family history

- Occurs in approximately 8% of African-Americans
- Occurs in other populations that migrated from near Mediterranean sea
- Same pattern on Hgb electrophoresis (cellulose) as Hgb D

Old world distribution of Hb S and Hb E

Note: Structural hemoglobin variants are Hb E (innocuous unless interacting with α or β thalassemia) and Hb S (causing sickle-cell disease in the homozygous state).

- Occurs in >15% of people of Southeast Asian descent
- Significant clinical condition when double heterozygote with β[°]thalassemia
- Most common abnormal hemoglobin in the world

- Occurs in 2-3% of African Americans
- Same pattern or Hgb electrophoresis (cellulose) as Hgb E and Hgb A2
- Most significant clinical condition when double heterozygote with Hgb S.

α thalassemia trait

- Results from a 2 out of 4 gene deletion
- Occurs in 2-3% of African-Americans (trans)
- Occurs in >5% of people with Southeast Asian descent (cis)

Fig. 13-5. Deletion of one or more of the four α genes results in an α -thalassemia syndrome. Examp of a normal α -globin gene complement and the phenotypes, genotypes, and clinical effects of variable deletions are shown. (From Schwartz E, Surrey S: Hosp Pract Sept. 15, 1986.)

Health Supervisor for Children with Sickle Cell Disease Section on Hematology/Oncology and Committee on Genetics *Pediatrics* 2002; 109; 526-535

Centers for Disease Control and Prevention Your Online Source for Credible Health Information

Sickle Cell Disease: 10 Things You Need to Know

http://www.cdc.gov/Features/Sickle Cell/

Thank you.

